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Abstract

A method is described for producing quantitative estimates of systematic uncertainties generated
in the analysis of impedance match shock-wave data. Central to the method is an analytic represen-
tation of the principal Hugoniot of the standard which incorporates a description of data-dependent
uncertainties of the principal Hugoniot and model-dependent uncertainties of off-Hugoniot states.
Expressions for the sound speed and Griineisen coefficient along the principal Hugoniot are also
derived with uncertainties. An accurate impedance match shock wave equation of state for Al to
shock pressures of 3 TPa is given, and is used to estimate the systematic uncertainties of several

previously published experimental results.
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I. INTRODUCTION

Shock wave impedance match measurements are a common method of producing shock
wave equation of state (EOS) data for a variety of different sample materials. These mea-
surements are performed by transmitting a shock wave from a known material (the reference
standard) into an unknown sample[1-4]. From measurements of two observables, usually the
shock velocities in the standard and in the sample, and using the Rankine-Hugoniot con-
servation relations one can deduce the pressure, density and internal energy in the shocked
sample. Such measurements depend on accurate knowledge of the equation of state of the
standard, and are therefore considered relative measurements. The shock wave EOS of the
standard must be calibrated, usually through a series of separate absolute measurements.
The data from absolute measurements are independent of theoretical or model-dependent
input, and the uncertainties in the EOS of the standard can be traced to measurement
uncertainties. In the case of relative measurements, the uncertainties in the EOS of the
standard propagate as systematic errors because the data must be reduced using imperfect
knowledge of the EOS of the standard.

The impedance match method is important because it is the simplest, and sometimes
the only, means available to obtain shock wave data on some types of samples, for exam-
ple fluid samples[5-8], or in the ultra-high ranges of shock pressure[9-11]. In recent years
impedance match techniques have been applied to obtain shock wave EOS data at ever higher
pressures in laboratory experiments, using for example laser-driven shock waves|[8, 12-14],
magnetically-driven flyer plates[15] or convergent explosive systems[16-18]. In the latter
cases, the experiments have reached a pressure domain where experimental knowledge of
the EOS of the standard is sparse. A further complication with impedance match analysis
is that, except at the lowest pressures, one cannot avoid introducing theoretical (i.e. model-
dependent) input in the calculations. In particular most of the recent studies that we are
aware of employ theoretical EOS models to perform the impedance match analysis[8-18].
Because of the difficulties of separating out and assessing the systematic bias contained in
a given theoretical EOS model, these studies estimated the random (measurement) errors,
but not the systematic uncertainties. Since the accuracy of the impedance match method
is related to the accuracy of our knowledge of the standard, and of the systematic details

of the impedance match analysis itself, it is important to produce quantitative estimates of



the systematic uncertainties in the analyzed results.

In this article we describe a method for impedance match analysis that addresses the
issues described above. It quantifies the uncertainties of both the random measurement and
systematic error contributions. In developing this method we have focused on the aluminum
shock wave standard because it is one of the most common standards available, and used
frequently in our own experiments. We apply the analysis to data avaliable from several
recent experiments. Knowledge of the systematic uncertainties together with the random
measurement uncertainties allows a comprehensive assessment of the overall accuracy the

resulting data.

II. IMPEDANCE MATCH ANALYSIS

A. Outline of impedance match calculations

In impedance match equation of state experiments the reference and sample impedances
generally do not match, and the incident shock wave resolves into a transmitted shock and
a reflected wave directed back into the standard material. When the sample impedance
is lower than that of the standard the reflected wave is a rarefaction, and the standard
undergoes an isentropic release; when the sample impedance is higher the reflected wave is
a shock, and the standard undergoes further shock compression.

The shock incident in the standard and that transmitted into the sample both obey the
Rankine-Hugoniot relations, which express the conservation of mass, momentum and energy

across the shock front,
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In the following we use the subscript i = 1 to denote the incident (first) shock state in the
standard and i = 2 to denote the state of the shock transmitted into the sample; ¢0 denotes
initial states. The pressure P, density p, internal energy E are the thermodynamic variables,
and U and u are the shock velocity and fluid velocity behind the shock front, respectively.

By measuring two observables, and combining these with equations (1-3) the remaining



parameters can be determined. This determination is obtained because conservation of
mass and momentum is maintained at the interface between the standard and the sample
upon passage of the shock front through it, so that the sample and standard maintain a
common pressure and fluid velocity at the interface between them. Once these quantities
are known the Rankine-Hugoniot relations can be applied to determine p and E in the
sample.

To determine the common P, and us at the standard-sample interface, calculations are
generally carried out on the P-u plane[l, 2], as shown in Fig. 1(a). Since the principal
Hugoniot of the standard is known the state (u;, P;) lies on the Hugoniot of the standard.
The unknown state in the sample (us2, P) lies along a straight line of slope pooUs passing
through the origin of the P-u plane (P = 0 in most cases), following the relation given by
equation (2). The states (u;, P;) in the standard and (ug, P») in the sample are connected
by the reflected wave in the standard; this connection follows a curve that originates from
the state along the principal Hugoniot, and moves off the Hugoniot. The branch of this
curve reaching higher pressures follows a second shock Hugoniot, centered on the state pi,

P;, Eq, and can be expressed by an equation of the form,
Pri(w) =P +p (u—u)Ulu—w), u<u (4)

which expresses equation (2) for the reflected shock in the standard; U(u) gives the depen-
dence of shock velocity as a function of fluid velocity behind the (second) reflected shock.
The branch reaching to lower pressures follows an isentropic release, and can be found by
computing the integral,

Py dP

U=1u — , b < P (5)
Py PR1CR1

where pgr; and cg; are the density and isentropic sound velocity in the standard evalu-
ated along an integration path that follows the thermodynamic isentrope passing through
the state (p1, P, F1). In either case, these curves cannot be computed accurately without
knowledge of the equation of state of the standard both on and off the principal Hugoniot.
In most situations only limited knowledge of off-Hugoniot states in the standard is avail-
able, and therefore model-dependent input is required to determine the reshock and release

profiles.



B. Systematic effects

Systematic effects enter through the fact that uncertainties are associated with the prin-
cipal Hugoniot and with the off-Hugoniot curves used to construct the solution in Fig. 1(a).
Depending on the method of analysis, there may also exist a systematic bias either because
the model used for the analysis may misfit the available data in a systematic way, (e.g. may
represent the reference EOS either on the soft or the stiff side of the available data), or
because the method used to evaluate the off-Hugoniot curves may contain approximations.
Both the systematic uncertainty and bias tend to cause a general shift the analyzed data as
a group (e.g. to be more or less compressible depending on whether a soft or stiff bias is
present in the model for the standard).

For off-Hugoniot states a well-known practical approximation is a graphical construction
which approximates the reshock and release profiles by the mirror-reflection of the principal
Hugoniot in the P-u plane about the point along the Hugoniot corresponding to the incident
shock state in the reference standard|[1l, 2]. For sample materials with similar impedance to
that of the standard, or at low pressures (< 0.2 TPa) this construction allows for remarkably
accurate results, but the accuracy diminishes for greater mismatch of the impedances, and
with high (> 0.2 TPa) incident shock pressure. The advantage of the mirror-reflected Hugo-
niot approximation is that the uncertainty in the principal Hugoniot can be propagated into
the mirror-reflection construction with standard methods. However, especially at high pres-
sures, the mirror reflection approximation differs systematically from the exact reshock and
release curves[19], as indicated Fig. 1(a); therefore its use will impose a systematic bias. The
accuracy of this approximation has been examined experimentally [20, 21] and theoretically
[22] for release states in several materials. The latter study estimated, based on theoretical
models, that the range of validity for use of the mirror reflection approximation requires
uz/u; — 1 < 0.6 in order that the systematic errors dugsys/us < 1-1.5% in determining us
for low impedance samples. This limit restricts the analysis to sample densities psg > 0.6 g
cm~3 in the case of an Al reference standard.

The obvious solution to this situation is to apply a correction, as suggested by Fig. 1(b).
For example, expressions for reshock and release states using the Mie-Griineisen model have
been worked out by McQueen et al.[23]; along these lines Nellis and Mitchell have applied

such a correction in the analysis of impedance match data of shock-compressed fluids[5, 24].



However, for applications over a wide range of states the common Griineisen approximations
such as I'/V = const are not general enough; for example, in the high pressure domain
[' ~ 0.4 ~ const for a wide range of materials [25]. Our aim is to construct a correction
valid over a wide range (0.1 < P < 3 TPa), where thermal electronic and ionic contributions
to the pressure become dominant.

Because of the issues outlined above, the recent studies that we are aware of[8-18] avoid
the mirror-reflected Hugoniot approximation and use instead theoretical EOS models (dif-
ferent authors use different models) both to represent the principal Hugoniot of the standard
and to compute accurate off-Hugoniot states. By construction the EOS model is usually fit
to a subset of the available data for the standard and contains rigorous theoretical content to
represent the reshock and release profiles accurately. This provides a significant advantage,
but comes at the expense of eliminating any representation of the uncertainties in the under-
lying Hugoniot data, or uncertainties in the parameters used to construct the model. In the
widely used SESAME library[26] there exist several theoretical EOS models for aluminum;
these were constructed for a variety of reasons, with varying levels of theoretical rigor, and
with varying qualities of fit to the available data; when used for impedance match analysis

all produce somewhat different results.

III. IMPEDANCE MATCH ANALYSIS INCLUDING SYSTEMATIC EFFECTS

In this section we present a method for performing impedance match EOS data reduction
and error propagation that addresses the issues raised above. Following the approaches
outlined earlier by Nellis and Mitchell[5], we combine (i) the measured principal Hugoniot of
the standard, as given by a fit to the available absolute (i.e. model-independent) data; and
(ii), an additional polynomial, as suggested in Fig. 1(b), that corrects the mirror-reflection
approximation to produce an accurate representation of off-Hugoniot states (reshock and
release).

As outlined in section IT A, calculations take place in the P—u plane, for which u is viewed
as the independent variable, and P the dependent variable. The principal Hugoniot of the
standard is represented by the function U(u), giving the shock velocity, U, as a function of

particle velocity, u, along the Hugoniot. The pressure along the principal Hugoniot is given



by,
PH(U,) = P10 U U(U), (6)

(from equation 1). From a measurement of the shock state in the standard, the fluid velocity

behind the shock, u;, can be determined, and the mirror-reflected Hugoniot can be defined,
PMl(U):PH(Q’U,l—’U,):pl() (2U1—’U,) U(Q’U,l—U) (7)

Accurate reshock and release profiles, Pg, (u), are then produced by correcting the mirror-

reflected curve with a model-dependent pressure correction, Pg, (u); that is,
Pr, (u) = P (u) + Pe, (u), (8)

where the subscript 1 indicates an explicit dependence of these functions on the incident
state, parameterized by u;. As noted above, the pressure correction is necessary to remove
the systematic bias of the mirror-reflected Hugoniot approximation over a wide range of
pressures, (i.e. samples with much higher or lower impedance than the standard).

The second observable in an experiment is the measured shock velocity of the shock
transmitted into the sample, U,. Using this variable the impedance match solution is found

by solving the equation Pg, (u) — p2o u U = 0 for u, or more explicitly,
P10 (2’11,1—’11,) U(2u1—u)+Pcl(u)—p20uU2:0; (9)

the solution yields the value uy, which then yields P, po and E, through equations (1 - 3).

The two main functions in the analysis, U(u) and Pg, (u) are constructed through fitting
procedures. The available Hugoniot data define U(u), and therefore Py(u) and Py, (u).
The correction Pg, is estimated from an average over several theoretical models. The fitting
procedures allow us to determine systematic uncertainties: the standard deviation in the fit
to U(u) gives the function oy (u); and, the standard deviation of Pg, (u) derived from an
ensemble of theoretical models gives the function op, (u). These additional functions can
be introduced into equation (9) in order to propagate the systematic uncertainties. In the
sections below we give explicit definitions for all of these functions.

For both U(u) and Pg, (u) the fits employ orthogonal polynomials with coefficients, «;
and b;, respectively, that have been assigned uncertainties o,, and o, determined through

the fitting procedures. Orthogonal polynomial constructions are employed so that the error



contributions for each coefficient are easily evaluated and combined in quadrature to produce

a total evaluation for the uncertainties,
2
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A. Fit to the principal Hugoniot

1/2

and (10)
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The primary means of representing the principal Hugoniot of a shock-wave reference
standard is through the relationship between shock speed and particle speed. For most
cases this relationship has been demonstrated to be linear (sometimes with small quadratic

corrections) over large ranges of these variables, and is typically represented by the equation,
U=C+ Su+Tu’ (11)

where, U is the shock velocity, u is the fluid velocity behind the shock and C, S and T are
the fit parameters. Standard deviation uncertainties for the fit parameters are usually given
when Hugoniot results are reported. These standard deviations are given by standard error

analysis expressions, for example in the case of o¢,

ac\’
o |27 (3)
J

where o; is the standard deviation of the jth datum in the data set used for the fit (more

1/2
: (12)

details are given in the appendix). For propagating the error in an impedance match anal-
ysis the relevant quantity is the estimated standard deviation of the shock velocity, oy (u),
as a function of the given particle velocity u. Although it is common to supply uncertain-
ties (£0C, £S5, £6T) when such fits are reported in the literature, we note that these
uncertainties provide incomplete information, because oy cannot be derived solely from the
uncertainties in the fit parameters. Specifically,

1/2

J

(ac as 26T>2

oy(u) = [Z 0]2-




Explicit evaluation of this expression involves summations over cross terms, e.g.
¥, 05u*(0C/0U;)(0S/9U;), which involve covariances between the coefficients of the fit.
This was recognized by Mitchell and Nellis[27]; these authors supplied an additional set of
coefficients that defined a quadratic fit to 2 oy.

To simplify this situation we use an orthogonal polynomial basis constructed such that the
covariances among the fit coefficients vanish; therefore, for the purpose of error propagation
the coefficients are independent. Using the orthogonal polynomial basis, we represent the

fit to the Hugoniot data with the following expression,
U(u) = ag+ a1(u — B) + as(u — ) (u — 72), (14)

where the parameters a; are the coefficients of the fit and 3, v; and v, are parameters of the
orthogonal basis. The fitting process also determines standard deviations, o,, for each of the
coefficients. The standard deviation in the fit, oy, is represented in terms of the standard

deviations of the coefficients,
oy (u) = [o3, + 05, (u— B)* + o (u— 711)* (u = 2)*)] /%, (15)

The appendix gives an explicit procedure for generating these parameters from a primary

Hugoniot data set.

B. Off-Hugoniot correction

The off-Hugoniot correction is defined in terms of normalized variables,

Po, (u) = Py (u1) pn, (u/uy = 1) (16)

where py, (¢) is the pressure correction normalized against the Hugoniot pressure, Py (u;) of
the incident shock in the standard, and the variable ¢ = u/u; — 1 is a normalized particle
velocity with origin shifted such that the two branches of the pressure correction are centered
at ¢ = 0. For reflected shocks (reshocks), ¢ < 0, and for release waves ¢ > 0. The particle
velocity u; is determined from the inverse relation u; = U~ (Uy).

The pressure correction is expanded in a series of Chebyshev polynomials and given by



an expression defined as follows,

¢ 2

> bsi(wr) [T;(3¢ +1) — 1]

=1

for —2/3<¢<0
p(@) =19 3 (17)

3 bri(m) [Ti(20 = 1) = (~1)]

=1

for0<¢g<1
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where T; are Chebyshev polynomials|28] of order i. The coefficients by;(u1) and b.;(u1) and
their respective uncertainties depend on the particle velocity u, and are determined through
fitting procedures as described in the appendix.

As with the expression for oy (u), the standard deviation of the pressure correction de-
pends on the uncertainties in the fit coefficients. By construction the Chebyshev polynomials
are orthogonal over the domain of the fit, and the individual coefficient uncertainties can be
combined in quadrature form, as indicated in equation (10), leading to the expression,

o

9 1/2
3o, [T 30+ 1) - 1]2]

for —2/3<¢<0

Opy (@) =4 ¢ 3 1172 (18)
> o w)? [0 - 1) - (1)
Li=1
{ for0<g<1
The uncertainty in the pressure correction as a function of the particle velocity is,
0Py (u) = Py (u1) oy, (u/ur —1). (19)

The appendix describes in detail the method for generating the fit coefficients and their

uncertainties from a set of theoretical models.

C. Implementation for impedance match analysis

In order to propagate systematic errors the functions U(u), and Pg, (u) have to be com-
bined with their respective uncertainties, oy (u) and op, (u). For that purpose we introduce

modified versions of the functions introduced above,
U(u; N) = Ulu) + A oy (u) (20)

10



Py(us A) = prouwU*(u; A) (21)
Pg (u,ur; N €) = Ppy(ug; A) [pa, (u/ug — 1)+ (22)

€ op,, (u/u1 — 1)] :

Here the parameters, A and ¢, introduce systematic variations to the impedance match curves
measured in units of standard deviations. For example U*(u;1) represents a U—u Hugoniot
curve that is offset systematically on the stiff side by 1 standard deviation from the best-fit
curve.

The propagation of systematic errors differs depending on whether the shock state in
the standard is determined by observing the shock velocity U; (laser-driven shock or nuclear
impedance match experiments) or the particle velocity u; (for example by symmetric impact
of a flyer plate whose velocity is known). The two cases are treated separately in the following

subsections.

1.  Analysis with Uy observable

For measurements in this class the primary observables (with random errors) are U; 60U,
and U, +6Us,, the shock velocities in the standard and sample, respectively. In this situation
there is a systematic uncertainty in the value of u; arising from the uncertainty in the EOS.
Consequently both the pressure P; and the particle velocity u; of the launch point for the
reshock or release profiles vary with a variation in the EOS of the standard. At this point
we also introduce parameters £ and ( to propagate the random errors. Taking these into
account we introduce the variable uj,,, which depends on A, £, Uy, and Ui, and is found
by solving the equation U* (u’l‘)\g; A) = Up + € 0U;. The impedance match solution equation

(9) modified to include systematic and random variations is then given by,

pro [2ulpe — u] U (2uiye — us A)+

(23)
Pg, (u, ulze; A, €) — pao u [Us + ¢ 6Us] = 0.

Solution of this equation for u yields us(A, €, &, ¢), and the Rankine-Hugoniot relations equa-
tions (1 - 3) are then used to determine Py(A, €, &, (), po(A, €,&,C) and Ea(A, €&, ).
The nominal (neutrally-biased) solution is found initially for e = A =& = ( = 0. A series

partial derivatives,
Ouy Ouy 0P, 0P,

ON’ Oe’ AN’ 0e’
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are needed to calculate the uncertainties. These are most easily found numerically, e.g.

dus _ u»(0.01,0,0,0) — u2(0,0,0,0)
N 0.01

. (24)

Since the uncertainty in the principal Hugoniot (A variation) originates from data alone,
and the uncertainty in the off-Hugoniot corrections (e variation) originates from theoretical
models, they are uncorrelated. Therefore we estimate the total systematic uncertainty by

adding the two components in quadrature,

1/2
8’11,2 2 8u2 2

Ougsys = l(ﬁ) + <E ; (25)

which gives the systematic uncertainty at 1o deviation. Similar expressions give the corre-

sponding o p,sys, Opysys, aNd Ogysys-

Random uncertainties are determined in a similar fashion, by computing for example,

9 911/2

= (52) + () |- 25)
This expression and the corresponding expressions for op,ran, Gpsran, and og,ran are equiv-
alent to the usual expressions for propagating the random errors in impedance match
expressions[15, 27].

A graphical illustration of the systematic variations is shown in Fig. 2, which shows the 1o
variations as dashed and dotted lines above and below the nominal reshock/release profile.
Important to note is the inversion of the soft and stiff variations when the uncertainties are
mapped onto the reshock/release profiles. For example the stiff variation that lies above
the principal Hugoniot intersects the Rayleigh line of the incident shock with u} < u; and
P} < Pyp, and as a consequence it is launched below the nominal reshock/release profile.
However, since it is stiffer (steeper) than the nominal profile, it tends to remain parallel.
When impedance matching with very soft sample materials, the Hugoniot contribution to
the systematic uncertainty can be comparable in magnitude to the uncertainty in the off-

Hugoniot correction.

2. Analysis with uy observable

With flyer plate experiments it is possible to determine the particle velocity in the stan-

dard accurately (largely independent of the EOS of the standard); in this case the primary

12



observables are u; + du; and Uy £ 6Us, i.e. the particle velocity in the standard and the
shock velocity in the sample. In this case there is no systematic variation of u; that depends
on the uncertainty of the EOS because u; is an observable. The parameter ¢ associated with
the random variation in w; is still required, so we define a new variable, uj, = ui + £ dus.

The impedance match equation in this case is,

pro [2 UTg —u] U*(2 UTg —u; A)+ (27)
Pg, (u, uig; Ay €) — pao u [Uz + (0Us] = 0.

Solution of the equation, and determination of the partial derivatives for estimating the

uncertainties is otherwise the same as expressed in equations (23 — 26).

The graphical representation in Fig. 3 reveals an important difference between the two
experimental cases. The shock state is identical to that in Fig. 2. However, because u; is
fixed instead of U; the soft and stiff variations of the Hugoniot uncertainty produce curves
on the reshock/release profile that are not inverted relative to the Hugoniot. That is, the
stiff variation, which lies above the Hugoniot, also lies above the reshock/release profile,
and vice versa for the soft. Furthermore, because u, is fixed, the variation corresponding to
the Hugoniot uncertainty is about 1/4 - 1/3 that of the U; case. For strong release states

this means that the dominant systematic uncertainty contribution is from op,, (u), and the

oy (u) contribution becomes negligible.

IV. WIDE RANGE IMPEDANCE MATCH EOS FOR ALUMINUM

Aluminum is an important impedance-match EOS standard; it is used frequently for
impedance match EOS experiments on other materials. This status has motivated a number
of studies to carry out accurate absolute shock-wave EOS on Al. To construct a principal
Hugoniot for the Al standard we considered only absolute EOS measurements. A key feature
of such measurements is that both the particle velocity v and shock velocity U are determined
in a model-independent way. Our EOS is intended for applications primarily at pressures
> 0.1 TPa, so we do not consider data for P < 0.03 TPa. In the lower pressure range early
experiments by Al’tshuler et al.[29] produced data to 200 GPa using explosively-driven Fe
flyer plates. Later Mitchell and Nellis[27] provided very accurate measurements from 30 -
170 GPa using Al and Ta flyer plates launched with a two-stage light gas gun. More recently

Knudson et al. have produced data of nearly comparable accuracy to extend the flyer-plate
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data to 500 GPa[30] and higher[31] using magnetically-launched flyer plates. Above this
range the experimental methods are more challenging, the available data are very sparse
and accuracy is poorer: Simonenko et al.[32, 33] described absolute measurements at 1 and
3 TPa; they measured the particle velocity by observing the motion of a y-source embedded
in the sample as it moved past a series of collimated apertures. Podurets et al.[34] reported
an absolute measurement of the Al Hugoniot at 1.7 TPa using an improved version of
the technique described by Simonenko. In Table I we provide a partial list the available
absolute data used to generate our fits[31]. We point out that the Simonenko report[32] is
a refined analysis of a preliminary result that appeared originally in Volkov et al.[33]; since
the Simonenko analysis supercedes the Volkov result, we do not include the original Volkov
datum in Table I.

Besides the absolute data we note that there exists also an extensive data set of relative
measurements on Al; i.e. shock measurements that are themselves impedance-match mea-
surements relative to another standard, usually Fe, Mo or SiO,. We do not include these
data in our fit and emphasize that only the absolute data in Table I and [31] were used to

determine the principal Hugoniot fit.

A. Principal Hugoniot of Al

It is well-known that the Hugoniot curves for many metals that do not pass through phase
transitions under shock are well fit with a piecewise linear form [4, 25]. We have fit the Al
EOS data using several functional forms and used an F-test to determine the optimum fit
with the least number of parameters. A sequence of fitting forms with increasing numbers
of parameters were tested. These were linear (2 coefficients), quadratic (3 coefficients),
piecewise linear /linear (4 coefficients), piecewise linear/quadratic (5 coefficients) and piece-
wise quadratic/quadratic (6 coefficients). The piecewise fits were determined iteratively by
separating the data into upper and lower sections: points u; > uy, were assigned to the
upper segment and u; < Uy, to the lower segment, where uy., is the particle velocity at
intersection of the piecewise segments. The value of u., was determined at each iteration
and then used to re-divide the data for the next iteration; the iterations were terminated
when uyi, reach a stable value (near 7 + 1 km/s for Al). The F-test criterion (evaluated at a

10% probability cutoff) indicated that the fit was improved up to the piecewise linear /linear
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case; beyond that level (e.g. linear/quadratic or quadratic/quadratic) both the data and
theoretical considerations[25] do not justify the use of a higher order fit.

The coefficients and uncertainties of the piecewise linear/linear best fit are given in Ta-
ble II. The fit is also displayed in Fig.4(a) where the solid curve shows the Al Hugoniot fit,
U(u), and the the dashed (dotted) curves show U(u) Loy (u) (U(u) £20p(u)) together with
the data points (u;, U;) used to generate the fit. At low pressures the data are very accurate,
and the uncertainties of the fit are hidden within the width of the drawn lines. A clearer
picture of the details of the fit relative to the data set is shown in Fig. 4(b) which displays
the residuals [U; — U (u;)]/U (u;); almost all of the data lies within 1% of the fit; a large frac-
tion lies within 0.5%. The dashed (dotted) curves show +oy(u)/U(u) (£20y(u)/U(u));
From these curves one can see that +oy(u)/U(u) < 0.5% for v < 10 km/s, and 0.7%
< op(u)/U(u) < 1.3% for 10 < u < 32 km/s. Because of the piecewise segmentation of
the fit the uncertainty oy (u) is discontinuous at the breakpoint (v = 6.81 km/s); this will
produce a slight discontinuity in error estimates for data analyzed at incident shock states
in Al near this discontinuity (270 GPa).

It is interesting to compare our best fit with Hugoniot predictions from several theo-
retical models and fits previously published in the literature. In particular we examine
the SESAME[26] 3719 and 3700[35, 36] tabular EOS models because these have been used
previously in impedance match analysis. The 3719 table has been used by us to analyze
impedance-match data previously [8, 14]. The 3700 table, calculated by Kerley[35], was
used by Knudson et al.[15, 21| to analyze impedance-match data on liquid Dy. Also shown
are three other Hugoniot curves: first, a theoretical Hugoniot that appeared in Mitchell et
al. [11] was used to analyze nuclear-explosive driven impedance match data; this Hugoniot
was extracted from Fig. 4 of that work; second, a linear fit reported by Trunin et al. [37] to
fit the ultra-high pressure range given by U = 5.9+ 1.19 u, is valid in the range 11 < u < 70
(units in km/s); third, a more recent wide range fit due to Trunin et al. [38] used to define
an Al standard for the analysis of a large set of impedance match data, a piecewise fit given
by U = 5.333 + 1.356u for v < 6.1 and U = 6.541 + 1.158u for 6.1 < u < 22 (units
in km/s). Figure 4(c) compares these models and fits by showing the relative deviation
[Un(u) — U(u)]/U(u) for each model m.

At low pressures, u < 7 kin/s, 3719 model is clearly too soft, but converges towards 3700
for u > 10 km/s. Both of these lie near the U(u) + 2 oy(u) curve for v > 14 km/s which is
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significantly stiffer than our fit. The other SESAME tables, 3713 and 3715 as well as QEOS
(not shown) also show a similar relatively stiff trend. If we focus on the range 6 < u < 22
km/s (excluding the v = 30 km/s Simonenko datum) it is evident that our best fit, 3700,
3719 and Trunin-01 pass through the error bars of almost all the points in this range, thus
it can be claimed that all of the models (excluding Mitchell-91) are in good agreement with
the data. The reduced x? statistics evaluated for each of these models relative to the data
in the range, 6 < u < 22 km/s have values of x2_ = 0.138 for our best fit and x7, = 0.177,
0.361 and 0.405 for Trunin-01, 3700 and 3719, respectively (here v = 23, given 25 data points
and assuming a linear 2-parameter represents the model in the range). Since x% < 1 for all
cases, all the models represent good fits. However, the fact that x? is significantly less than
unity in all cases indicates that the given error bars are over-estimated; therefore, the x?
statistics are not useful for distinguishing between models. A more meaningful question is:
What is the probability that model “A” is more correct than model “B” relative to the given
data set? This question can be answered by performing an F-test; that is, by computing
Pp(F, vy, ;) where Pp is the F-distribution probability for exceeding F and F = x2 /x>
is the ratio of the two x2 statistics with v; and v, degrees of freedom, respectively[39]. In
our case vp = v, = 23. We find probabilities of 28%, 1.3% and 0.6% that the Trunin-01,
3700 and 3719 models, respectively, are a better representation of the data than our best fit
in the range 6 < u < 22 km/s. In other words, this suggests > 98% probability that 3700

and 3719 are too stiff relative to the existing data set.

B. Pressure corrections

The pressure corrections for our Al EOS were generated by averaging the pressure correc-
tions predicted by five different EOS models using the method described in the appendix.
The results are tabulated as a set of fitting coefficients, listed in Table III, and are used
in equations (16-19) to produce quantitative evaluations of the pressure correction P, (u).
The pressure corrections were averaged over a set that included SESAME models 3713, 3715
and 3719; Kerley’s 3700 table[35, 36, 40]; and the QEOS model of More et al.[41] Fig. 5
shows the systematic trends of the pressure corrections. At low shock amplitudes (u; < 4
km/s) the magnitude of the pressure correction is less than 3% for all values of ¢, indicating

that the mirror-reflection approximation is accurate at low pressures. At higher pressures
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the correction increases significantly on the reshock branch, especially for large impedance
mismatches: for ¢ < —0.5 it exceeds 40% of P, for u; > 25 km/s. On the release branch
however, the magnitude of the correction never exceeds 5% of P; for all values of ¢; however,
one should be aware that P, < P; for large ¢, so the correction is significant relative to P.
Also notable is the fact that p,,(q) > 0 for all ¢ at low shock amplitudes, while at higher
amplitudes the correction curve takes on a characteristic oscillation: there is a finite range
0 < g < 0.5 where p,,(¢) < 0 on the release branch. The pressure correction is entirely
model-dependent; therefore, it is important to compare the correction against available data

in order to assess its validity.

1. Reshock branch

In Fig. 6(a-c) are plotted a series of reshock data measured by Nellis et al.[42] for double-
shocked Al using Ta and Cu anvils. The experiments determined the reshock state (ug=+dus,
P, + §P,) produced from a known incident shock state P;, u1, by observing the shock state
in an anvil whose EOS has previously been determined. By constructing the quantity
[Py — Py, (ug)]/Pr(u1) we obtain an experimental determination of the pressure correction
relative to the mirror reflection of our best fit Hugoniot; in the figure this is plotted versus
the normalized particle velocity g = us/u; — 1, where Py, and Py are defined in equations
7, 6, 14 and Table II. Since u and g are regarded as independent variables, the measurement,

error duy is incorporated into the uncertainty in the measured pressure correction,

50 (62) = 5—— [ (OPo)? + (dPr, [dul)2(0us)? (28)
PH (Ul)

where dPpg, /dul, is the slope of the Al reshock curve at u = uy the measurement state.
The datum in Fig. 6(d) compares a reshock point at 1.4 TPa reported by Trunin et al.[37].
No uncertainties were reported for the latter point; these were estimated by assuming the
same relative errors as reported by Nellis et al. For the range of velocities and pressures for
which the data are available the pressure corrections are in agreement within the accuracy
of the data; however, it is evident the data are sparse and the accuracy is not high enough
to distinguish between models or to assess the overall accuracy of the reshock pressure
correction. Nellis et al. concluded that the data are in very good agreement with the

mirror-reflection approximation. Given that there is no significant discrepancy, and that the
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deviation among the models is smaller than the data accuracy, we can only assume that the

models provide a good representation of the reshock states.

2. Release branch

For the release branch the most stringent test of the pressure correction is for strong re-
leases. Figure 7 shows a comparison of the release branch pressure correction against the data
of Holmes et al.[43] and Knudson et al.[21], who measured the release state (ugtdus, Py+Py)
of Al releasing into a SiO, aerogel foam sample with a known EOS. The measurement un-
certainties dp,, were calculated as in section IV B 1 with equation (28). The measurements
were from initial states at u; = 3 km/s and u; = 6.44, 7.5 and 10 km/s respectively. It
is instructive to focus on Fig. 7(d) where there are a statistically useful number of data
points clustered around ¢ = 0.76. Here we find that the statistical average of the 7 data
points (0.0356) matches very closely the average theoretical correction (0.0362); and, that
the standard deviation of the 7 data points (0.0150) matches closely the standard deviation
among the theories (0.0147). Therefore, the model-averaged release correction is accurate,
and the available data provide no justification to modify the theoretical content (e.g. to
impose a bias by eliminating or favoring particular models). The fact that the standard
deviations are comparable is fortuitous, but also convenient: since the error bars and stan-
dard deviation of the data are well matched to the standard deviation among the theoretical
models we can use o, (u) from the models without modification as as close representation
of the true (i.e. experimental and theoretical) uncertainty in the pressure corrections of the
release branch. This also indicates that the current measurement accuracies, as impressive
as they are, remain insufficient to distinguish among the five theoretical models examined

in this study.

C. Thermodynamic derivatives

The empirical EOS construction developed here is intended primarily for data analysis
and to produce accurate error estimates; it avoids explicit model-dependent functional forms
(e.g. Mie-Griineisen) with the aim of producing neutrally-biased fits. Nevertheless, it is

useful to make contact with current theoretical models of the high pressure Al EOS. Since
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the current model provides a description of states both on and off the principal Hugoniot it is
possible to extract thermodynamic derivatives, specifically the isentropic sound velocity c;,
the Griineisen coefficient I', and the U versus Au relationships of the second shock Hugoniot
curves.

Thermodynamic derivatives can be expressed as algebraic combinations of various deriva-
tives taken with respect to u along the principal Hugoniot and along the reshock/release
curves, i.e the derivatives: dPy/du, dPg,/du, etc. It is useful at this point to introduce

expresssions giving the volume and energy along the principal Hugoniot. These are,

_Uu)—u
VH(U,) = 7p10U(u) y (29)
EH(U,) = E10 + %(PH(U,) -+ Pl()) (% — VH(U)> y (30)

where U(u) is the Hugoniot fit of equation (14), and Py (u) is from equation (6). The

corresponding expressions along the reshock Hugoniot are,

Vri(u) = Vi(ur) — (u— u1)*/(Pr, (u) — Pu(u)), (31)
Epi(u) = Eg(u1) + %(PH(ul) + Pr, () (Vi (u1) — Vri(u)), (32)

where Pg, (u) is as given by equations (8), (16) and (17). We develop the thermodynamic
derivatives using the reshock branch rather than the release branch because simple analytic
expressions are easily derived for the thermodynamic quantities using the Rankine-Hugoniot
equations. It is not possible to derive such simple expressions on the release branch, because
integrations along isentropes are required. However, in the limit of weak shocks the second
shock Hugoniot follows the isentrope very closely.

In the process of evaluating derivatives of these terms it is also convenient to express the
pressure correction in the form of a Taylor series expanded about ¢ = u/u; — 1, i.e. about
states (uy, P;) along the principal Hugoniot. To second order in ¢ the pressure correction
can be expressed as,

Pui(q) = Aq+ B¢ (33)
where the coefficients A and B and their respective uncertainties are expressed in terms of
the reshock pressure correction coefficients,

A=3by+12by, o04=[90%, + 14407 ]'/2,
B =18 by, op = 180y,,.

(34)
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Here it is implicit that A and B are functions of u; (since by and b,; are functions of uy).
Over the range of particle velocities listed in Table IIT A varies from 0 to -0.22, and o 4 varies
from 0 to 0.17.

In the expressions below we give expressions valid only for a linear segment of the u-
U shock Hugoniot. The sound speed is connected with the acoustic impedance and the

compressibility, which in turn is related to the slope, dPg, /du of the reshock/release curve,

dPpg,
du

_ (a0 + (a1 — 1)151“1— a18)((A — 1)ag + a1 ((A — 2)us + (1 — A)B)
B ap + al(ul — ﬁ) (35)

cs(u1) = Vi(us)

The Griineisen coefficient, I, is defined as I' = V 0P/0E]|,; this quantity can be derived

in a similar fashion from the principal Hugoniot and reshock/release curves,

(dPH/dU)(dVH/dU)_l - (dPR1 /d’LL) (dVRl/dU)_l
(dEH/dU) (dVH/du)*l — (dERl /d’U,) (dVRl/du)*l
1

= alu%(ao n a1(U1 _ IB))Q [(ao + (a1 - 1)u1 - ﬂal)(alﬁ — ao) X

C(ur) = Vi (wi)

U=u1

(_ (ag + a1(uy — B))*(ag + a1(2u1 — B)) "
ap — a1
(A= Do+ 0s((4 = D — (4= D)) (30

Both ¢; and I' are first derivatives of the pressure on the EOS surface, and as such they
depend only on the first derivatives of Pg,, Py, Er1, En, etc. evaluated along the Hugoniot
(i.e. u — uy). Therefore the expressions for ¢, and I' have no dependence on B, the second
order term of equation (33). Furthermore, most of the dependence involves the parameters
of the principal Hugoniot fit(ag, a; and 3), with a small sensitivity to the precise value of
A. Thus the model-dependent contributions to the expressions for ¢, and I" are small; the
derived values depend primarily on the fit to the principal Hugoniot, and therefore on the
absolute shock Hugoniot data. The uncertainties un ¢; and I' are easily calculated from the
uncertainties in the underlying parameters, e.g. dc, = [0%(0c,/0A)* + ¥, 02 (3¢, /a;)?]) /2.
Figure 8 shows shows ¢, and I' along the principal Hugoniot to 3 TPa. The experimental

sound speed data of McQueen et al.[44] are in excellent agreement; the Griineisen param-

eter measurements of Neal[45] are also in good agreement except near the melt transition.
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Notable in Fig. 8(a) is that above 0.5 TPa ¢, is somewhat smaller than the average value pre-
dicted by the theoretical models. This is expected because the piecewise fit to the Hugoniot
is significantly softer than the Hugoniot curves predicted by the models. The uncertainty in
cs is quite large at high shock pressures, and reflects the fact that the fit is less accurate at
higher pressures. The dashed curve, lying below the c¢s curve is the result if we set A =0 in
equation (35); this is equivalent to assuming that the mirror reflection approximation holds
true along the Hugoniot. The fact that this latter curve lies close to the ¢, points indicates
that the model-dependent pressure corrections play a minor role in determining c,, and that
the fit to the Hugoniot data determines most of the compressibility.

Shock Hugoniot curves for second shocks closely follow a linear U versus Au dependence,
U(Au) = ¢, + §Au, where U is the velocity of the second shock relative to the medium
behind the first shock, and Au = u — u; is the change in particle speed between the first

shock and second shock states. The slope, $(u;), is given by the equation,

S(u1) = — [V (w)

du U — Uy o
_ (a1us + B(ao + a1(u1 — B)))(ao + (a1 — Nus — a15)
B ui(ap + a1(u1 — B)) . (37)

Evident from this expression is that § depends on the second order coefficient B, and has

d Pp, (u) — PH(ul)]

no dependence on A. Fig. 9 shows a plot of the second shock Hugoniot slope. Above
P ~ 0.5 TPa, the correction introduces a large adjustment to the estimated value of s,
indicating a large model-dependent contribution. In general second shock states for reshock-
type impedance match experiments are not “strong” relative to the first shock state, because
P, ~ P,. Since B is a second order correction, it is related to a second derivative of the
EOS surface. A Taylor expansion in u of the Hugoniot carried out by Johnson[25] (weak
shock limit) relates § to the isentropic pressure derivative of the bulk modulus, 0Bs/0P|s =
45 — 1, where Bg is defined as Bs = pdP/0p|s. Evidently, for shocked Al near 3 TPa
0Bs/0P|s ~ 2.6.

V. EXAMPLES

The best-fit Hugoniot is softer than the available tabular models for Al at pressures above

1 TPa. Therefore application of this model to existing data reaching into the TPa range is
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of interest, because all previous analyses have used tabular EOS models that are probably
too stiff. More importantly, the examples serve to provide quantitative estimates of the
systematic uncertainties in addition to the random uncertainties. We show the relative

contributions of these error sources for several relevant cases.

A. Example: High pressure EOS of Cu and Mo

High pressure nuclear-impedance match data for Cu and Mo relative to Al were measured
by Mitchell et al.[11], and analyzed with a theoretical EOS for Al that was constructed by
the authors of that work. The principal Hugoniot in [11] is significantly stiffer than our
current best-fit model, corresponding to ~ U(u) + 5oy (u) (see Fig. 4(c)).

The raw measurement data was published in Table II of [11], and thus it is possible to
reanalyze these data using our impedance match model. The results of this reanalysis are
shown in Fig. 10(a) for the Cu case, and Fig. 10(b) for the Mo case. In addition the detailed
results of the new impedance-match analysis are given in Table IV. For both the Cu and
Mo experiments the reanalysis produces a general softening of the Cu and Mo Hugoniot
points, with the largest shift occuring at the highest pressures; analysis of these points
(at ~ 2.3 TPa) produces approximately 8% higher compression than the original analysis.
The original data as published in [11] were significantly stiffer than other experiments and
existing tabular models, a fact that has been noted by others[46]; the new analysis brings
these impedance-match data into closer agreement with the existing data and models.

A comparison of the relative contributions of the four sources of error is of interest to
experimentalists designing future experiments. The contributions from the two systematic
error sources are balanced, and produce a total systematic uncertainty of about 1.5% in the
determination of compression. The measurement error is larger; furthermore, the magnitude
of Ous/0 is about 3 times larger than Ous/d¢, indicating that most of the random error
contribution comes from propagating the uncertainty 6U;. This because the Rayleigh line
for the incident shock intersects the Al principal Hugoniot at an acute angle, which tends
to magnify the contribution of §U;. Since the Rayleigh line of the shock in the sample tends
to intersect the reshock-release curves at much larger angles, the propagated contribution of
0U, is much smaller. This is true in general for all U;-type measurements. Therefore, opti-

mized impedance matching with U;-type measurements will be obtained with experiments
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optimized, if possible, to maintain 6U; ~ 0.2-0.3 6Us.

Reduction of the measurement uncertainty to a level much below that of the systematic
uncertainty (for this particular case) is probably not warranted. Although one might expect
future improvement in our knowledge of the principal Hugoniot of Al, the uncertainty in the
off-Hugoniot correction, as noted in section IV B, is not likely to change without a significant
improvement in measurement accuracies. This assessment must be made on a case by case

basis for different samples and drive pressures.

B. Example: High pressure EOS of LiF and Al;O3

Laser-driven shock wave experiments on LiF (to 1.4 TPa) and Al,O3 (to 1.9 TPa) were
carried out recently using an Al reference standard[14]. These experiments were analyzed
using the SESAME 3719 table. The raw observational data (U; and Us) from these experi-
ments was indicated in Fig. 1 of [14]. We have reanalyzed these data using our impedance
match model in order to infer more accurate values for the compression, and to provide
estimates of the systematic uncertainties.

The results, listed in Table V, produce slightly higher compressions owing to the fact
that 3719 lies near U(u) + 2 oy (u) relative to our best fit in this pressure range. The LiF
compression is about 3% higher and the Al,O3; compression is about 2% higher. The results
also show that the systematic error in this case is dominated by the uncertainty in the
principal Hugoniot (Qus/0\); this is especially so in the case of LiF which is well-matched
in impedance to the Al reference. The total systematic uncertainty in compression is about
1.5 — 2%, about a factor of 4 smaller than the measurement uncertainty.

The measurement errors are dominated by the uncertainty in the measurement of U; be-
cause Ous/0E ~ 10 Qus/AC; in these experiments transit time measurements across a stepped
base plate were used to determine U; with about 2 — 2.5% accuracy. The measurement un-
certainties can be improved by concentrating on improving the measurement accuracy of

U1; methods to achieve this are under active development.
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C. High pressure EOS of liquid deuterium, flyer plate method

A recent series of impedance match experiments on liquid deuterium (Dj) were reported
by Knudson et al.[15] In those experiments the shock was driven by a magnetically acceler-
ated flyer plate, which impacted an Al base plate from which the shock was transmitted in
the the Dy sample. Measurements of the flyer plate velocity were used to determine u; &+ du;q
and measurements of the shock velocity in the Dy determined U; 4+ 6Us. From these inputs
an impedance match analysis following the procedure outlined in section ITI C 2 can be car-
ried out. The Knudson et al. experiments were analyzed using Kerley’s 3700 table for the
Al EOS.

A quantitative assessment of the systematic uncertainties was not carried out in [15],
primarily because of the difficulties summarized in the section II B. Therefore, we have
reanalyzed a subset of the data presented in [15] to compare with our impedance match
model and to estimate the magnitude of the systematic error present in the analysis of that
experiment. Knudson et al. estimated the systematic uncertainty in the compression to be
a few %, and backed up this assessment with reverberation measurements that corroborated
their density determination. Reanalysis of their data for a subset of 8 experiments is given
in Table VI. Examination of this table in comparison with Table I of [15] shows that the
inferred compressions from the two analyses are almost identical (as expected). The average
relative deviations of us and 7, are 0.2% and 0.5% respectively for the first 7 experiments
listed in Table VI. For flyer plate experiments with low impedance samples, the off-Hugoniot
uncertainty (Oug/de) dominates the systematic error; the Hugoniot uncertainty (Oug/0\)
is ~ 25 times smaller (also as demonstrated in Fig. 3). As discussed in section IIIC 2,
this demonstrates an advantage of the flyer plate technique for this kind of experiment,
because the impedance match analysis is insensitive to inaccuracies in the principal Hugoniot
of the model used in the analysis. From our impedance match analysis the magnitude
of the systematic uncertainty is ~4% in the compression (~8% at 20 confidence), which
is consistent with the estimates of Knudson et al. This uncertainty is directly traceable
to theoretical and experimental uncertainties in the release profile pressure correction, as
discussed previously in section IV B 2.

The new impedance match analysis of the last experiment, Z946, appears to be an outlier.

Compared to the other experiments the new analysis result deviates by 0.7% in uy and 2.3%
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in 75 from the analysis with the 3700 EOS. Since the Hugoniot uncertainty plays no role here,
this discrepancy must originate from a difference between the release profile predicted by
3700 compared with that predicted by our model-averaged correction. The 2.3% discrepancy
is well within our estimated 4% uncertainty, thus there is no reason to favor one result over
the other. No release profile data is currently available to test the models at these conditions.

The random uncertainty for individual shots is about 10%, roughly 2.5 times larger than
the systematic error. The random uncertainties can be reduced by averaging, which was
done by Knudson et al. for several of their measurement points. It is interesting to note
that the measurement uncertainty in these experiments is dominated by the measurement
of the flyer plate velocity: the dus/0& contribution overwhelms the duy/9¢ contribution by
a factor of 7 — 25.

D. High pressure EOS of deuterium, incident shock method

U,-type impedance match EOS measurements on solid deuterium driven by a convergent
explosive system have been reported by Belov et al.[16] and Boriskov et al.[17]. More recently
similar measurements on liquid deuterium have been reported by Boriskov et al.[18]; however,
in the latter report the authors listed only the analyzed U, — uy values and did not give the
underlying U; data, thus it is not possible to assess the systematics of the latter study. A
collaboration between our group and the University of Rochester has also carried out U;-
type impedance match measurements (currently in preparation for publication[47]) using a
laser-shock driver. In Table VII we show an analysis of Belov et al.[16], Boriskov et al.[17]
and two data points from [47] for the purpose of comparing the systematic errors with the
u1-type measurements of Knudson et al.

The compression results produced by our analysis in Table VII are approximately 3.3%
higher than found in [16] and 1.0% higher than in [17]; thus our impedance match model
appears to be slightly softer than that used by those workers. However, these discrepancies
are within the estimated range of systematic uncertainty, which is ~ 4.3% for the conditions
of those experiments. One may assume that a similar level of 4 - 5% systematic uncertainty
applies to the analysis in [18].

For all of the experiments listed in Table VII the release profile uncertainty contribution

(Ouo/0€) is larger than the Hugoniot uncertainty contribution (dus/0)), and in comparison

25



with Table VI the systematic uncertainties for the U;-type measurements are only somewhat
larger (about 20%) than for the u;-type measurements. This is because both methods are

equally affected by the dominant release profile uncertainty.

VI. DISCUSSION

We have presented an accurate method of performing ultra-high pressure impedance
match analysis for two common types of impedance match experiments. The impedance
match EOS for the Al shock wave standard, including uncertainties, is described completely
by Tables II and III in conjunction with equations (14 - 19). The new Al fit is somewhat
softer than existing tabular models, and will produce softer results for most impedance match
data. The analysis method amounts to finding a root of a polynomial of quadratic or cubic
order, and is summarized in equations (20 - 27). The systematic uncertainties estimated
by the analysis method are directly traceable to the uncertainties in the fit to the absolute
Hugoniot data, and to the standard deviation of the pressure corrections predicted by an
ensemble of theoretical models. As new data for the Al principal Hugoniot, and improved
theoretical models become available, the new information can be incorporated easily into
the analytical forms developed here, in order to improve the analysis of current and future
experiments.

A potential weakness of the current analysis is the fact that the theoretical estimates
for the pressure corrections are largely unconstrained by data for both reshock and release
states at high pressures (> 1 TPa); the pressure corrections under these conditions are
therefore almost entirely model-dependent. Since the pressure corrections are increasing in
the limit of extreme pressures it seems important to produce experimental data that tests
the theoretical predictions for Al (and other standards) under strong reshock and release at

pressures > 1 TPa.
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VII. APPENDIX
A. Linear and quadratic fitting to the principal Hugoniot

The fits used in this study are all derived using least squares fitting of a primary data set

over an orthogonal polynomial basis. The form of the fit used is
U = a()X() + a1X1 =+ G/QXQ, (38)

where the basis is defined by a constant term, Xy = 1, a first order polynomial X; = (u—f)
and a quadratic polynomial Xy = (u — 71)(u — 7). The coefficients of the fit, a;, are
determined from a weighted x? minimization of the polynomial form above relative to the
measured data set. The data set is comprised of measurement pairs (u; + du;, U; £ §U;),
where du; and 0U; are the individual measurement errors of u; and U; respectively. For
fitting the u; are regarded as independent, and the U; are dependent with standard deviation
0? = §U? + 1.26%6u? assigned to each datum; the du; contribution to o; is weighted by the
1.262 factor to account approximately for the average slope (s ~ 1.26 for Al) along the
principal Hugoniot. The weight assigned to each datum is w; = o; 2.

The basis used for the fit requires the additional parameters [, v; and 7,. While these
parameters depend on the data set, their dependence is only on the independent variables,
u;, and not on the measured variables, U;. Errors are not assigned to 3, 7; and 7,, and
they are calculated and maintained to high precision. The orthogonal basis is determined
by the expressions defined below, which were derived following a procedure outlined in

Bevington[48]. Initially, we compute several weighted sums,

N N N N
W = Zi:1 Wiy Yy = 22'21 Willy, Y2 = Eizl ww?; Yy = Zi:1 wiuga (39)

where the summations are made over N data points. These terms are combined to define

the parameters of the orthogonal polynomial basis up to second order,

B = T,/W

(BuZae = Whys — /(SuBue — WEya)? + 4(52 — WE,2) (=2, + 5y Xy0)
no 232 — W)

(BuZuz = WSy 41/ (ZuDee — WEis)? + 4(52 — WE,2) (=32, + BuS,)
”T 22— W)
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Using the above definitions is can be shown that the basis has the property
N
;win(ui)Xk(ui) =0, forj#k, (40)
which is the orthogonality condition.
The weighted least squares fit of the data (x? minimization) is given by solving a system
of n+1 equations for an n order fit for the coefficients a;. The equations can be represented

in matrix form as,

2, = ajagy, for k=0, ..., n (41)

where,
N N
2k = ZwiUiXk(ui), and O = szXy(uz)Xk(uz) (42)
i=1 i=1
The matrix o is diagonal (i.e. aj, = 0 for j # k) because of the orthogonality condition

1 is needed to solve the matrix equations and to

of equation (40). The inverse, € = a~
evaluate the errors in the coefficients; € is also diagonal. The standard deviations for the

uncertainties in the fit coefficients are given by,

o — 5 oz (Pu)
aj : 1 3U,

(43)

=1

However, from the fact that the matrices are diagonal,

Oa,; "
(8[;) = Z kWi Xy (ui) = €j;w; X (us), (44)
7 j:()

which leads to the following expression for the uncertainties,
N
0a; = €55 2 wiX;(ui)”. (45)
i=1

Because the matrices have zero-valued off-diagonal elements, the covariance among the fit-
ting coeflicients vanishes, and the error contributions can be propagated using simple quadra-

ture combinations of the individual contributions as indicated in equation (15).

B. Determining the off-Hugoniot pressure correction

The off-Hugoniot corrections are determined entirely from theoretical EOS models for

the reference standard as follows. For each model m we begin by computing the principal
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Hugoniot predicted by the model, Py,,(u), and then choose a series of states, j, parame-
terized by particle velocity u; along the principal Hugoniot (giving model-dependent Uj,,).
Starting from these states we compute the second shock Hugoniot Prskjm(u) and release
profiles Prgrjm(u), centered on the Hugoniot state j. Finally, from each of these calcu-
lated profiles we subtract the the approximate profile represented by the mirror-reflected
Hugoniot, Prjm(v) = Pym(2u;m — u) centered at the state j,

Po,. (u) = Prsk,,, () — Pp,, (2 Ujm — u) u < Ujm, (46)

PreL;, (u) — Pg,, (2ujm — u) u > Ujp,.

Therefore the Pg,, (u) represent a pressure correction that must be added to the mirror-
reflected Hugoniot of state j in order to retrieve the exact reshock and release profile for
that model. By compiling a series of such correction curves over a range of states 7 one may
generate the correction over wide range of parameter space by interpolation methods.

This construction is designed to normalize a given theoretical EOS model against a mea-
sured Hugoniot, yet retain the information in the model pertaining specifically to the off-
Hugoniot states. That is, starting from a measured Hugoniot Pg,, (u), one can define a
Puyg, (u) for state j and combine it with the correction Pg,,, (u) for state j of model m, in
order to generate an impedance match EOS that incorporates accurately both the measured
principal Hugoniot and the theoretical off-Hugoniot physics represented in model m. It turns
out that the theoretical picture is uncertain because different models produce different es-
timates for P, (u); therefore, we estimate a model-dependent uncertainty, op,, (u), based
on the variation among models. The discussion below presents a compact polynomial con-
struction for representing this model-dependent information including the estimate of the
model-dependent uncertainty. The procedures outlined in section III C provide the means
for incorporating op,, (u) into the impedance match analysis.

To generate the polynomial fits we define a normalized pressure correction,

Py (@) = Py, ((g + 1) ug) /Py, (uj). (47)

Here, P¢,,, (u) is scaled by the Hugoniot pressure of the incident state, and mapped onto a
normalized velocity coordinate, ¢ = u/u; — 1, with origin ¢ = 0 centered on the incident
shock state u;. The goal of the fit is to approximate py,,, (q) accurately (~1 % of Py, (u;))

with a small number of coefficients. In general the normalized reshock pressure correction,

29



Prsk;,, (g) can be fit to this accuracy by a quadratic polynomial in ¢, and the release branch,
Prgr;, (¢) by a cubic polynomial in q. We choose the Chebyshev polynomials to construct
the fits to the py,,, because of their orthogonality and near-optimal minimization of errors
over a finite fitting domain.

Practical limits for the appropriate ranges of ¢ depend on the limiting impedances of
possible samples. Release of Al into cryogenic liquid Hy produces values of ¢ ranging from
0.84 to 1.0 for incident shocks in Al from 4 TPa to 0.1 TPa (0.66 to 0.96 for the case of
liquid Ds). At the opposite end of the impedance spectrum estimated reshock conditions in
Al for a selection of typical high impedance samples (e.g. Au and W) shows that —0.6 < ¢
in all cases. Intermediate cases are 0.25 < ¢ < 0.42 for water, and —0.32 < ¢ < —0.25
for Fe. Therefore for the purpose of constructing fits to the pressure correction curves it is
sufficient to fit p,,,, (¢) to the interval —2/3 < ¢ < 0 on the reshock branch and to 0 < ¢ < 1
on the release branch.

The Chebyshev approximation is defined to fit a function over a normalized interval,

—1 < y < 1; therefore we define additional mappings according to the two branches,

0:(y) = (y—1)/3 (48)
¢(y) = (y+1)/2, (49)

which maps the interval —1 <y < 1to —2/3 < ¢; < 0 and to 0 < g, < 1 for the reshock and
release branches repectively. The Chebyshev coefficient for model m, shock state j, branch

t and order i is then defined by computing the sum[49],

where L is typically a large number (50 in our case, in order to sample the function ade-
quately), and ¢ is either s or r for the shock and release branch mappings, respectively. A
separate fit is applied to each case j, and the resulting set of coefficients are tabulated to
represent the pressure corrections for a given EOS model over a wide range of states. For

the reshock branch we compute coefficients up to 7 = 2 and for release branch up to i = 3.
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Using these definitions the approximation to py,,, is given by[49],

( _b'ms 2
—5" + Y bjmaTi(3¢ + 1)
=0

for —2/3<¢<0

Pujm (@) =9 ;3 (51)
% + Z bjmriﬂ(2q - 1)
=0
{ for0 < ¢ < 1.
Averaging over a set of M models is achieved by averaging the coefficients,
1 M
(bjei) = = D_ bjmsi- (52)
jti M = jmii
Uncertainties oy,,, are determined from the corresponding standard deviations,
, M 1/2
Obje; = Z (Djmei — (bjei))? . (53)
gt M _ 1 = Jjmie Jre

For a particular experiment characterized by incident shock velocity u; we interpolate (linear
interpolation is adequate) into the set of (b;;) and o,;; that are tabulated against the particle
velocities u;; the interpolated values are referred to as by;(u1) and oy, (u1) in equations (17)
and (18) respectively, with ¢ denoting the branch s or r depending on ¢. The tabulation for
Al is given in Table III.

The coefficients b,y and by, are not listed in Table III; instead, they are discarded and
replaced with an additional constraint to enforce the condition p,, (¢) — 0 as ¢ — 0. This is
equivalent to zeroing the constant term in a Taylor series representation of p,, (¢) expanded
about ¢ = 0 (as in equation (33)). The exact corrections p,;m(q) of equation (47) have this
property while the approximate fits do not. Therefore the fits are modified by redefining b,

and b, to satisfy this constraint,

bso(ul) = -2 [b51 (’LL1) + bSQ(Ul)] (54)

bro(ul) = 2 [b,«l(ul) — br2(’u,1) + brg(’u,l)]. (55)

These contraints are included implicitly in equations (17) and (18) (compare with equa-
tion (51)).

The two figures, Fig. 11 and Fig. 12 show the values of the reshock and release coefficients

respectively as fitted to the five models used to construct the averaged correction. Also plot-

ted are the model averaged values (by;) and (b,;) with error bars that represent the variation
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among the models, o, and oy,,, respectively. These plots reveal that the magnitudes of all
of the correction coefficients are effectively zero in the limit of weak shocks v < 4 km/s,
indicating that the mirror-reflection approximation is very accurate for weak shocks; this
fact is well known and consistent with, for example, the velocity doubling rule to estimate
the particle velocity in a weak shock from a measurement of the free surface velocity. On
the other hand all of the correction coefficients increase in magnitude for increasing shock
strength. In the strong shock domain (v > 6 kmn/s) the mirror-reflection approximation will
produce increasingly inaccurate results, especially for reshock-type experiments.

In Fig. 13 we compare the values of (bs) and (b,9) as determined from the unconstrained
Chebyshev fit along with the corresponding values determined from the constraint equa-
tions (54) and (55). It is evident that the values determined from the constraints are very
close to those determined from the unconstrained fits, well within the model-to-model un-
certainties; therefore the imposition of the constraints does not degrade the character or

quality of the fit.
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TABLE I: Absolute shock wave Hugoniot data for the Al shock Hugoniot for P > 0.1 TPa. The

table lists the shock velocity U and particle velocity u with associated measurement errors as given

in the published data. This is part of the underlying data set for the fit given in Table II, and

shown in Fig. 4.

U oU U ou Method year reference

km/s km/s km/s km/s

7.445 0.043 1.520 0.002 Symmetric impact 1981 [27]
7.964 0.057 1.885 0.002 Symmetric impact 1981 [27]
8.810 0.056 2.522 0.003 Symmetric impact 1981 [27]
9.130 0.009 2.80 0.028 Symmetric impact 1960 [29]
9.406 0.062 2.992 0.003 Symmetric impact 1981 [27]
10.170 0.070 3.592 0.004 Symmetric impact 1981 [27]
10.39 0.010 3.70 0.037 Fe plate impact 1960 [29]
10.570 0.100 3.902 0.012 Ta plate impact 1981 [27]
11.080 0.280 4.130 0.050 Symmetric impact 2003 [30]
11.360 0.280 4.370 0.050 Symmetric impact 2003 [30]
11.250 0.110 4.382 0.013 Ta plate impact 1981 [27]
11.590 0.130 4.626 0.015 Ta plate impact 1981 [27]
11.770 0.110 4.765 0.014 Ta plate impact 1981 [27]
12.000 0.120 4.900 0.014 Ta plate impact 1981 [27]
12.040 0.130 5.007 0.016 Ta plate impact 1981 [27]
12.140 0.130 5.052 0.015 Ta plate impact 1981 [27]
12.160 0.110 5.100 0.014 Ta plate impact 1981 [27]
12.94 0.013 5.62 0.056 Fe plate impact 1960 [29]
13.770 0.450 6.380 0.070 Symmetric impact 2003 [30]
14.010 0.220 6.530 0.070 Symmetric impact 2003 [30]
14.640 0.230 7.090 0.090 Symmetric impact 2003 [30]
14.670 0.470 7.050 0.090 Symmetric impact 2003 [30]
14.910 0.240 7.210 0.090 Symmetric impact 2003 [30]
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TABLE I: ... continued.
U oU U ou Method year reference

km/s km/s km/s km/s
15.030 0.240 7.210 0.090 Symmetric impact 2003 [30]
15.110 0.240 7.420 0.090 Symmetric impact 2003 [30]
15.250 0.500 7.440 0.100 Symmetric impact 2003 [30]
15.230 0.500 7.500 0.100 Symmetric impact 2003 [30]
16.080 0.270 8.080 0.100 Symmetric impact 2003 [30]
17.830 0.590 9.590 0.150 Symmetric impact 2003 [30]
17.820 0.200 9.660 0.160 Symmetric impact 2003 [30]
17.890 0.200 9.810 0.180 Symmetric impact 2003 [30]
23.400 0.600 14.500 0.300 ~-reference 1985 [32]
24.200 0.700 15.100 0.400 «y-reference 1985 [32]
30.500 0.700 21.000 0.600 ~y-reference 1994 [34]
40.000 0.700 30.000 2.000 «y-reference 1985 [32]
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TABLE II: Piecewise linear-linear fit to absolute measurements of the principal Hugoniot of Al.
The fit was determined using procedures outlined in sections IIT A, IV and the appendix. For the

segmented linear-linear fit expressed here the quadratic coefficients are a9 = 0 and o,, = 0.

Fitting range ap £ 0q, a1 + og, I}
km/s km/s km/s
u < 6.813 9.384 + 0.021 1.323 + 0.016 2.9738
6.813 <u < 30 17.992 + 0.078 1.167 + 0.026 9.8381
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TABLE III: Coefficients for the pressure correction in shock compressed Al as expressed in equations (17) and (18). For each impedance
match experiment the coefficients for the pressure correction and its uncertainty are determined by linear interpolation in this table, using

the the particle velocity, u; in the shock incident in the standard as the independent variable.

6€

Ul bs1 £ op,, bsa £ o, b1 £ oy, bro £ 0y, br3 £ o,
(km/s) x1073 x1073 x1073 x1073 x1073
0 0+0 0+0 0+0 0+0 0+0
2 140 -0.0 £ 0.3 4.5 + 3.8 0.8 £ 2.7 1.3+ 21
4 23 + 11 3.3+ 1.0 20.1 £+ 11.9 -3.8 + 3.9 23+ 15
6 75+ 6 15.4 + 4.0 22.4 + 7.5 -0.8 + 5.8 43+ 1.3
8 112 £ 19 22.2 4+ 4.7 27.8 + 9.0 1.6 + 6.7 7.5 + 2.8
10 -142 + 25 28.1 + 2.0 29.2 + 6.2 4.7 £ 6.3 7.6 +3.1
12 171 + 22 36.0 + 3.9 30.4 + 6.2 52 + 6.3 9.0 + 2.9
14 -201 + 20 43.3 + 4.3 31.6 + 6.2 5.7 + 6.1 9.9 + 2.6
16 -228 + 20 48.6 + 4.2 32.4 + 6.3 5.8 + 6.0 -10.5 + 2.2
18 -253 + 22 52.9 4+ 3.7 33.2 + 6.2 5.9 + 6.0 11.2 £ 1.7
20 277 + 25 57.2 + 5.3 33.7 + 6.0 6.2 + 6.2 -11.8 + 1.2
22 311 £ 17 61.9 + 7.2 33.4 + 6.0 6.1+75 -12.6 + 0.7
24 -333 £+ 24 64.4 + 9.7 34.2 + 5.0 58 + 9.1 -12.7 + 0.6
26 -350 + 28 66.9 &+ 11.8 35.1 + 4.2 7.6 + 7.7 -14.3 + 0.8
28 -367 + 27 71.2 + 10.0 35.7 + 2.6 8.7 + 8.6 -15.5 + 1.4
30 -386 + 25 76.9 + 5.1 35.6 & 1.8 10.3 £ 7.5 -16.2 + 1.9
32 -407 + 25 82.4 + 1.5 36.0 + 1.5 10.5 + 5.8 -16.4 + 2.6
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TABLE IV: Analysis of the impedance match data from Table IT in Mitchell et al. [11]. Raw data are displayed in the second and third column
groups; the analysis results are in adjoining columns. The fourth column group shows a breakdown of the individual error contributions in
the determination of o, including the contributions from the measurement errors of the two observables, dus/9¢ and dug /¢, the systematic
uncertainty contribution of the hugoniot fit Jus /90X, and the systematic uncertainty contribution of the off-hugoniot (reshock) curve dus/Je.

The random and systematic errors denoted by (ran, sys) for uy are given by equations (26) and (25), respectively. A similar decomposition

of contributions can be computed for the other variables, P, pa, Fs etc. and are given for P, and the compression 72 = pa2/pag.

Expt.|  p1o P20 Up £ 60Uy Us £ 06U aa—u; Ba_ucg % % U2 £ Oyy(ransys) | 12 £ OPyransys)| 712 £ Opy(ran,sys)
gcm? km/s km/s km/s GPa

Cu-1| 2.714 8.938 | 28.00+£0.20 21.50+0.20| 0.167 -0.054 -0.131 0.075| 12.744(0.18, 0.15)| 2448+(34, 29) | 2.45+(0.07, 0.04)
Cu-2 | 2.697 8.934 | 22.90+0.20 18.10+0.20| 0.161 -0.050 -0.069 0.055| 9.42+(0.17, 0.09) 1523+(27, 14) | 2.08+(0.05, 0.02)
Cu-3 | 2.699 8.937| 17.90+0.20 13.70+0.20| 0.158 -0.048 -0.044 0.049| 6.53+(0.17, 0.07) 799+(20, 8) 1.91£(0.06, 0.02)
Mo-1| 2.714 10.150| 28.00+0.20 20.50+0.20| 0.162 -0.057 -0.126 0.076| 12.274+(0.17, 0.15)| 2554+(36, 31) | 2.49+(0.07, 0.04)
Mo-2| 2.697 10.220| 22.90+0.20 17.1040.20| 0.157 -0.053 -0.066 0.056| 9.06+(0.17, 0.09) | 1584-£(29, 15) | 2.13+(0.06, 0.02)
Mo-3| 2.699 10.220| 18.90+0.30 13.80+0.20| 0.230 -0.051 -0.041 0.053| 6.82+(0.24, 0.07) 962+(33, 9) 1.98+(0.08, 0.02)




v

TABLE V: Analysis of the impedance match data from Fig. 1 in Hicks et al. [14]. The column arrangement is the same as in Table IV.

Expt. po  p| U +dU Uz £+ 60U 88—?? %—122 % % u2 £ Oyy(ransys) | 12 £ Opy(ransys)| 72 T Ony(ran,sys)
gem 3 km/s km/s km/s GPa

Al,O3-1| 2.70 3.97| 29.27+0.84 28.57+0.23| 0.829 -0.052 -0.191 0.055| 17.12+(0.83, 0.20)| 19424(95, 23) | 2.50+(0.19, 0.04)
Al,O3-2| 2.70 3.97| 26.99+0.39 26.27+0.22| 0.384 -0.050 -0.156 0.043| 15.40+(0.39, 0.16)| 1606+(41, 17) | 2.42+(0.09, 0.04)
Al,03-3| 2.70 3.97| 22.19+0.45 22.65+0.28| 0.431 -0.058 -0.084 0.038| 11.51+£(0.43, 0.09) 1035£(39, 8) | 2.03+(0.09, 0.02)
LiF-1 2.70 2.64| 27.04+0.69 29.26+0.32| 0.736 -0.066 -0.178 0.009| 17.25+(0.74, 0.18)| 1333%(58, 14) | 2.444(0.16, 0.04)
LiF-2 2.70 2.64| 27.93+£0.72 29.554+0.26| 0.774 -0.056 -0.195 0.006| 18.14+(0.78, 0.20)| 1415+(61, 15) | 2.59+(0.18, 0.04)
LiF-3 2.70 2.64| 25.60+£0.47 26.61+0.28| 0.506 -0.060 -0.156 0.003| 16.26+(0.51, 0.16)| 1143+(37, 11) | 2.57+(0.14, 0.04)
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TABLE VI: Analysis of a subset 8 experiments from the impedance match data of Knudson et al. [15]. Data are from Table I in [15].

The column arrangement is the same as given in Table IV. The principal Hugoniot of the Al standard was adjusted slightly for cryogenic

conditions (higher density and a small correction to the slope).

Expt. P10 P2 uy + dug Uz + 0U; 88—?? %—ug % % U2 £ Oy, (ran,sys) P> & 0pyransys) | 112 £ Opy(ran,sys)
gem 3 km/s km/s km/s GPa

Z904N | 2.74 0.167| 5.27+0.13 13.504+0.24| 0.250 -0.017 0.005 0.128| 9.69+(0.25, 0.13) | 21.94(0.66, 0.29)| 3.55+(0.29, 0.12)
7590 2.74 0.167| 6.38£0.29 15.26+0.28| 0.553 -0.022 0.006 0.145| 11.69+(0.55, 0.14)| 29.84+(1.5, 0.37) | 4.27+(0.72, 0.17)
77928 2.74 0.167| 7.42+0.15 17.91+0.39| 0.287 -0.033 0.008 0.186| 13.464+(0.29, 0.19)| 40.3+(1.2, 0.56) | 4.03%+(0.39, 0.17)
7711 2.74 0.167| 9.98+0.25 23.23+0.19| 0.474 -0.018 0.007 0.208| 17.80+(0.47, 0.21)| 69.1+(1.9, 0.81) | 4.284+(0.40, 0.16)
7894 2.74 0.167| 10.35+0.16 24.10+£0.22| 0.303 -0.021 0.007 0.215| 18.42+(0.30, 0.21)| 74.14+(1.4, 0.86) | 4.24+(0.27, 0.16)
Z1111IN| 2.74 0.167| 10.80+0.17 24.944+0.44| 0.316 -0.043 0.007 0.224| 19.184+(0.32, 0.22)| 79.9+(1.8, 0.93) | 4.33+(0.37, 0.17)
Z1110N| 2.74 0.167| 11.37+£0.17 26.11+0.47| 0.318 -0.046 0.007 0.235| 20.14+(0.32, 0.24)| 87.8+(2.0, 1.0) | 4.37+(0.38, 0.17)
7946 2.74 0.167| 12.12+0.49 28.00£0.57| 0.927 -0.056 0.008 0.249| 21.38+(0.93, 0.25)| 100.0+(4.7, 1.2) | 4.23+(0.67, 0.16)




ey

TABLE VII: Analysis of U;-type impedance match data for Dy from Belov et al.[16], Boriskov et al.[17] and Hicks et al. [47].

Expt. pio p | Ui xdUr U+ iU 88—?22 88_122 % % U2 £ Tyy(ran,sys) Py £ 0p,(ran sys) 72 £ Opy(ran,sys)
gem 3 km/s km/s km/s GPa

Ref.[16]| 2.74 0.199| 16.39+0.10 20.30+0.20| 0.157 -0.019 -0.127 0.197| 14.90+(0.16, 0.23)| 60.20+(0.82, 0.95)| 3.76+(0.16, 0.16)

Ref.[17]| 2.74 0.199| 21.204+0.30 28.20+0.60| 0.476 -0.064 -0.158 0.243| 21.70+(0.48, 0.29)| 121.8£(3.5, 1.6) | 4.34%(0.47, 0.19)

32252 2.74 0.174| 24.414£0.22 33.74+0.30| 0.355 -0.032 -0.246 0.308| 26.70£(0.36, 0.39)| 156.4+(2.4, 2.3) | 4.79+(0.30, 0.27)

32254 2.74 0.174] 26.00£0.24 36.66+0.30| 0.387 -0.032 -0.293 0.334| 28.95+(0.39, 0.44)| 184.3+(2.8, 2.8) | 4.76+(0.29, 0.27)
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FIG. 1: (a) Graphical representation of impedance match analysis for an incident shock of 1.4
TPa in Al. The solid curve with positive slope is the principal Hugoniot of the Al standard,
and the incident shock state is indicated by the filled circle at (u1, P;). A low impedance sample
is represented by the lower dotted line and the impedance match state (ug,P,), while a high
impedance sample produces a reflected shock and the state (u’s, P's). The (blue) dash-dot curve
of negative slope shows locus of states access by the reflected shock and release states, Pg,(u),
passing through (u1, P1); the (black) dashed curve of negative slope shows the mirror reflection
of the principal Hugoniot, P, (u). (b) The pressure correction Pc, which shows the difference

Pr, — Py, corresponding to the Hugoniot states above.
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FIG. 2: Systematics of impedance match analysis for U;-type measurements with a low impedance
sample. The U; and U, observables correspnding to the two (dotted) Rayleigh lines. The principal
Hugoniot (reshock-release curve) is shown as the solid red (blue) curves. Systematic variations
of the principal Hugoniot are represented by the dashed curves. Systematic variations of the off-
Hugoniot states are represented by the dash-dot curves. The upper right frame shows a detail of
the systematics of determining the reshock-release curves from an uncertain principal Hugoniot.

The lower right frame shows the impedance-match solution for a low impedance sample.
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FIG. 3: Systematics of impedance match analysis for u;-type measurements with a low impedance
sample. The u; observable is represented by the vertical dotted line; other than this difference,
the states are identical to those in Fig. 2, as is the meaning of the curves. In this situation the

Hugoniot uncertainty is almost negligible in comparison to that in Fig. 2, as explained in the text.
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FIG. 4: (a) Absolute Al Hugoniot data in the U-u plane, from [29] — inverted triangles, [27] — solid
squares, [30] — solid triangles, [32] — solid circles, and [34] — solid diamond. The best fit (described
in the text and Table II) is the solid black line, the oy (£20y) uncertainty limits are delimited
by the black dashed (dotted) curves. (b) Residuals [U; — U(u;]/U(u;) of the Hugoniot data, and
the relative uncertainties of the fit: +oy /U — dashed; and £2 0y /U — dotted. (c) Similar to (b)
showing the relative deviations of several A1 EOS models from our best fit: [Up,(u) — U(u)]/U(u).

Each curve is labeled and the comparison is discussed in section IV A.
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FIG. 5: Solid curves show normalized pressure correction, py, (¢), for reshock and release profiles
centered on states with (a) u; = 2.5 km/s, (b) u;1 = 5 km/s, (c) u1 = 10 km/s, and (d) u; = 25
km/s. Upper (lower) dashed curves show the curves py,(q) + (—)0p,.(¢), delimiting the 1o

uncertainty band of the pressure correction.
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Normalized particle velocity, q

FIG. 6: Al double shock data (open triangles) in (a, b, c) are from [42], and in (d) from [37]. The
light curves show pressure corrections predicted from individual theoretical models: 3715 — solid,
red; 3719 — dash, green; 3713 — dot, blue; QEOS — dash-dot, magenta; 3700 — dash-dot-dot, black.

The heavy solid curves show py,, (¢) and the heavy dashed curves show py, (q) + oy, (4)-
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FIG. 7: Al release profile data (open triangles) in (a) is from [43], and in (b, ¢, d) from [15, 21].

The curves are as indicated in the caption for Fig. 6.
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FIG. 8: (a) Solid circles show the sound velocity, cs, predicted by the equation (35); the uncertainty
in ¢, is indicated by the error bars. The light curves show ¢, as predicted from individual theoretical
models: 3715 — solid, red; 3719 — dash, green; 3713 — dot, blue; QEOS — dash-dot, magenta; 3700
— dash-dot-dot, black. Both 3715 and 3700 contain a realistic description of the melt transition;
this produces the oscillations near 0.15 TPa. The heavy dashed curve shows ¢; from (35) for the
case when A = 0. The open diamonds show the bulk sound speed data of McQueen et al.[44] (b)
Solid circles show the Griineisen coefficient I' predicted by equation (36). Open squares with error
bars show the data reported by Neal[45]. The remaining curves have the same correspondence to

the models as in (a).
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FIG. 9: Filled circles show the slope § of the second shock Hugoniot given by equation (37), plotted
as a function of shock pressure. Error bars indicate the uncertainty in 5. Light curves are from
models as in Fig. 8. Heavy dashed curve shows the value of § expected for the mirror reflection

approximation, B = 0.
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FIG. 10: (a) Hugoniot data for Cu on the P—p plane. The original analysis by Mitchell et al.[11]
is given by the solid triangles; the re-analyzed data are shown by the open triangles. The error
bars represent only the random error contribution. Curves show the Hugoniots from three different
SESAME EOS models: 3330 - dashed, red; 3332 - dotted, blue; 3333 - dash-dot, black. The data
points are: open diamond [10], open square [50], open circle [51]. (b) Hugoniot data for Mo,
triangles, as in (a). Curves are from SESAME models for Mo: 2980 - dashed, red; 2981 - dotted,

blue. Data points: open diamond [52], open circles are the (absolute) gas gun data reported in

[11].
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FIG. 11: Open circles show the model-averaged reshock branch pressure correction coefficients (a)
bs1 and (b) bse; and the corresponding error bars show the magnitudes of (a) op,, and (b) oy,
Also shown are the coefficient values determined from the underlying models: SESAME 3715 (solid,
red), SESAME 3719 (dash, green), SESAME 3713 (dotted, blue), QEOS (chain-dot, magenta) and
3700 (chain-dot-dot, black)[40].
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FIG. 12: Same as for Fig. 11, for the Chebyshev coefficients of the release branch of the pressure

correction.
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FIG. 13: Open circles show the model-averaged zero-order coefficients, (a) bso and (b) byg of
the (unconstrained) Chebyshev fits to the models; the error bars show the respective standard
deviations. The open diamonds show the values of the zero-order coefficient as determined by the

constraint equations (54) and (55).
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